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Ab&uct: Optically active hydroaxulenes have been synthesized by solid state photochemical rearrangement 
of the diester (-)-la and subsequent ring enlargement of the tosylhydraxone (+)-2c. Oxidative 
cleavage of the double bond of (+)3 gives the trans-perhydroaxulene (-)-4. 

The hydroazulene skeleton occurs widely in natural products. Stereoselective syntheses for this class of 

compounds are therefore highly desirable’? We here report on a new approach to optically active trans- 

perhydroaxulenes functional&d on G3a and G6. 

Our synthesis starts with the solid state photochemical rearrangement of the di_O-isopropylidene-a-D- 

glucofuranosyl diester (-)-la. This diester gives, by solid state photochemical rearrangement of the oxepine 

part in aqueous suspension, the methanohydroaxulene 2a in 58% yield with 92% d@. The aldehyde (+)-2b 

with (3aS,6&M?)-configuration3) is obtained in 96% yield after removal of the chiral auxiliary. 
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Decomposition of the tosylhydrazone (+)-2c with sodium methoxide in methanol*) (42 hours under reflux) 

gives, by ring enlargement under the migration of the metbano brtdge, the methyl ether (+)3 in 35% yield. 

(+)3 can be easily separated from by-products (see below) by flash chromatography on silica gel with 

ether/pentane (1:l). 

Ruthenium tetroxido oxidation9 finally leads to the crystalline perhydroazulene derivative (-)A in 36% - 

58% yield. 
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Structural assignments 

Characteristic physical and spectroscopic data for all new compounds are givenq. 

The structural assignment of 3 and 4 is based on the NMR spectra and the comparison with the related 

compounds 5 and 6. diih (99-2~ as the starting material, 6% (*)-Jb, 8% (*)-6, and 26% (+a were 

separated by flash chromatography and isolated in addition to the main product (*)3. Compounds 2c, 5 and 

6 show characteristic sig/lals for the xyu and anti hydrogens of the isolated methylene group belonging to the 

methano bridgeq. This alsb holds for the bans-hydrindane (+)-7, described earlier”. These signals are no 

longer present in 3 and 4 hereby establishing the ring enlargement and formation of an ethano bridge in 3. 
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The chemical shifts of C-8a (3: 48.74 ppm (d); 4: 48.54 ppm (d)) are typical for trans-fused’ bicyclic 

systemss? The absolute (3aS,QR&tR)configurations of (+)3 and (-)-4 follow from the x-ray structural 

analysis of the dimenthylester 2 [RO = menthyl] and chemical correlations3). In the above reaction sequence 

2a -D 2b - 2c -, 3 the stereochemistry on C3a and C-8a remains untouched. The stereochemistry on C-6 

of compound 3 is determined by the bridgehead position. The diastereomeric purity (r98%) of 2a is derived 

from the NMR spectra3? In addition the relative configuration of our starting material (+)-2b is established 

by x-ray structural analysis of the oxidation product (+)-7’! 

Recently we have performed the rearrangement 1 -, 2 with di-O-isopropylidenea-L-glucofuranose as 

chiral auxiliary (yield 54% with 93% &z)~). In consequence the enantiomers (-)3 and (+)-4 can be 

synthesized by the same procedure. 
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