A NEW STEREOSELECTIVE APPROACH TO THE TRANS-PERHYDROAZULENE SKELETON

Brigitta Popp, Frank Sönnichsen and Werner Tochtermann*

Institut für Organische Chemie der Universität, Olshausenstr. 40, D-2300 Kiel, FRG

(Received in UK 2 December 1992)

Key Words: Solid state photochemical rearrangement; Ring enlargement; Ruthenium tetroxide oxidation

Abstract: Optically active hydroazulenes have been synthesized by solid state photochemical rearrangement of the diester (-)-1a and subsequent ring enlargement of the tosylhydrazone (+)-2c. Oxidative cleavage of the double bond of (+)-3 gives the trans-perhydroazulene (-)-4.

The hydroazulene skeleton occurs widely in natural products. Stereoselective syntheses for this class of compounds are therefore highly desirable¹). We here report on a new approach to optically active transperhydroazulenes functionalized on C-3a and C-6.

Our synthesis starts with the solid state photochemical rearrangement of the di-O-isopropylidene- α -D-glucofuranosyl diester (-)-1a. This diester gives, by solid state photochemical rearrangement of the oxepine part in aqueous suspension, the methanohydroazulene 2a in 58% yield with 92% $de^{2.3}$. The aldehyde (+)-2b with (3aS,6R,8aR)-configuration³⁾ is obtained in 96% yield after removal of the chiral auxiliary.

B. POPP et al.

Decomposition of the tosylhydrazone (+)-2c with sodium methoxide in methanol⁴ (42 hours under reflux) gives, by ring enlargement under the migration of the methano bridge, the methyl ether (+)-3 in 35% yield. (+)-3 can be easily separated from by-products (see below) by flash chromatography on silica gel with ether/pentane (1:1).

Ruthenium tetroxide oxidation⁵⁾ finally leads to the crystalline perhydroazulene derivative (-)-4 in 36% - 58% yield.

Structural assignments

Characteristic physical and spectroscopic data for all new compounds are given⁶).

The structural assignment of 3 and 4 is based on the NMR spectra and the comparison with the related compounds 5 and 6. With (\pm) -2c as the starting material, 6% (\pm) -5b, 8% (\pm) -6, and 26% (\pm) -5a were separated by flash chromatography and isolated in addition to the main product (\pm) -3. Compounds 2c, 5 and 6 show characteristic signals for the syn and anti hydrogens of the isolated methylene group belonging to the methano bridge⁶. This also holds for the trans-hydrindane (+)-7, described earlier⁷. These signals are no longer present in 3 and 4 hereby establishing the ring enlargement and formation of an ethano bridge in 3.

The chemical shifts of C-8a (3: 48.74 ppm (d); 4: 48.54 ppm (d)) are typical for trans-fused bicyclic systems⁸). The absolute (3aS,6R,8aR)-configurations of (+)-3 and (-)-4 follow from the x-ray structural analysis of the dimenthylester 2 [RO = menthyl] and chemical correlations³). In the above reaction sequence $2a \rightarrow 2b \rightarrow 2c \rightarrow 3$ the stereochemistry on C-3a and C-8a remains untouched. The stereochemistry on C-6 of compound 3 is determined by the bridgehead position. The diastereomeric purity ($\geq 98\%$) of 2a is derived from the NMR spectra³). In addition the relative configuration of our starting material (+)-2b is established by x-ray structural analysis of the oxidation product (+)-7⁹.

Recently we have performed the rearrangement $1 \rightarrow 2$ with di-O-isopropylidene- α -L-glucofuranose as chiral auxiliary (yield 54% with 93% de)³⁾. In consequence the enantiomers (-)-3 and (+)-4 can be synthesized by the same procedure.

Acknowledgements: Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is acknowledged with gratitude. We thank Dr. Christian Wolff for helpful discussions of the NMR spectra.

References and Notes

- ") Dedicated with respect to the memory of Professor Günther Snatzke.
- Kočovský, P.; Tureček, F.; Hájíček, J. Synthesis of Natural Products: Problems of Stereoselectivity, Vol. I and II, CRC Press, Inc., Boca Raton, Florida, 1986; Corey, E. J.; Chang, X.-M. The Logic of Chemical Synthesis, Wiley, New York, 1989. Recent examples: Giguere, R. J.; Harran, P. G.; Lopez, B. O. Synthetic Commun. 1990, 20, 1453-1462. Kennedy, M.; McKervey, M. A. J. Chem. Soc. Perkin Trans. 1 1991, 2565-2574. Kim, S. K.; Pak, C. S. J. Org. Chem. 1991, 56, 6829-6832. Maki, S.; Asaba, N.; Kosemura, S.; Yamamura, S. Tetrahedron Lett. 1992, 33, 4169-4172.
- Tochtermann, W.; Olsson, G.; Sczostak, A.; Sönnichsen, F.; Frauenrath, H.; Runsink, J.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1989, 122, 199-207. Tochtermann, W.; Sönnichsen, F.; Wolff, C.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1989, 122, 1969-1975.
- 3) Tochtermann, W.; Schlösser, U.; Popp, B.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Tetrahedron Lett. 1989, 30, 6855-6858.
 We have been able to increase our originally reported yield of 45% 2a with 83% de by the use of very pure di-O-isopropylidene-α-D- and L-glucose synthesized by the method of Schmidt, O. T. Methods Carbohydr. Chem. 1963, 2, 318-325. Ott, F. diploma thesis, Universität Kiel, 1992; Chem. Ber. in preparation.
- Shapiro, R. H. Org. React. 1976, 23, 405-507 and earlier references given therein. Wilt, J. W.; Schneider, C. A.; Dabek, H. F.; Kraemer, J. F.; Wagner, W. J. J. Org. Chem. 1966, 31, 1543-1551.

- 5) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
- 6) Selected physical and spectroscopic data of new compounds:

(+)-2c: mp. 49 °C (from dichloromethane/pentane); $[\alpha]_D^{20} = +72.5$, $[\alpha]_{546}^{20} = +87.1$, $[\alpha]_{436}^{20} = +156.5$ (c = 0.72, CH₂Cl₂). ¹H NMR (200 MHz, CDCl₃): $\delta = 1.42$ ppm (d, J = 10.9 Hz, 1 H, anti 9-H), 2.41 (dd, J = 10.9, 2.0 Hz, 1 H, syn 9-H).

(+)-3c: Oil; $[\alpha]_D^{20} = 1 + 15.0$, $[\alpha]_{546}^{20} = + 17.7$, $[\alpha]_{436}^{20} = + 25.8$ (c = 0.48, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.8 - 2.3$ ppm (m, 15 H), 3.21 (s, 3 H, 6-OCH₃), 3.70, 3.73 (2 s, 6 H, COOCH₃).

(-)-4: mp. 98 °C (friom ether/pentane); $[\alpha]_{D}^{20} = -49.5$, $[\alpha]_{546}^{20} = -58.0$, $[\alpha]_{436}^{20} = -102.5$ (c = 0.2, ether). ¹H NMR (300 MHz] CDCl₃): $\delta = 1.60 - 2.52$ ppm (m, 15 H, CH, CH₂), 3.35 (s, 3 H, 6-OCH₃), 3.85 (s, 3 H, COOCH₃), 3.86 (s, 3 H, COOCH₃). ¹³C NMR (75 MHz, CDCl₃): $\delta = 22.53$ ppm (t, CH₂), 25.19 (t, CH₂), 30.67 (t, CH₂), 32.28 (t, CH₂), 33.12 (t, CH₂), 33.36 (t, CH₂), 39.90 (t, CH₂), 48.54 (d, C-8a), 52.39 (q, OCH₃), 52.52 (q, OCH₃), 53.32 (q, OCH₃), 59.81 (s, C-3a), 85.48 (s, C-6), 163.67 (s, COOCH₃), 165.03 (s, COOCH₄), 200.14 (s, C=O)^{*}, 200.44 (s, C=O)^{*}.

(±)-5a: mp. 59-60 °C (from ether/pentane); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.25$ ppm (d, J = 10 Hz, 1 H, *anti* 9-H), 2.33 (dd, J = 10, 1.5 Hz, 1 H, *syn* 9-H).

(±)-5b: Oil; ¹H NMR (90 MHz, CDCl₃): δ = 1.27 ppm (d, J = 10 Hz, 1 H, anti 9-H), 2.30 (dd, J = 10, 1-2 Hz, 1 H, syn 9-H), 3.27 (s, 3 H, CH₂OCH₃), 3.44 (AB, 2 H, CH₂OCH₃).

(±)-6: mp. 82 °C; ¹H NMR (90 MHz, CDCl₃): δ = 1.93 ppm (AB, J = 12 Hz, 1 H), 2.39 (AB, J = 12 Hz, 1 H), 3.14 (s, 3 H, OCH₃).

- 7) Tochtermann, W.; Peters, U.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Tetrahedron Lett. 1991, 32, 483-486.
- Whitesell, J. K.; Minton, M. A. Stereochemical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy, Chapman and Hall, London 1987.